Mechanism, kinetics and toxicity assessment of OH-initiated transformation of triclosan in aquatic environments

Yanpeng Gaoa,b, Yuemeng Jia, Guiying Li, Taicheng Ana,*

a State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
b University of Chinese Academy of Sciences, Beijing 100049, China

A R T I C L E I N F O

Article history:
Received 5 July 2013
Received in revised form 6 October 2013
Accepted 8 October 2013
Available online xxx

A B S T R A C T

The mechanisms and kinetics of OH-initiated transformation of triclosan (TCS) in aquatic environments were modeled using high-accuracy molecular orbital theory. TCS can be initially attacked by \(^{\cdot} \)OH in two ways, OH-addition and H-abstraction. Twelve OH-addition routes were reported, and the C atom adjacent to the ether bond in the benzene ring \((R_{\text{add}}B_1) \) was found as the most easily attacked position by \(^{\cdot} \)OH, producing \(^{\cdot} \)TCS\(-\)OH\(_B_1 \). Seven H-abstraction routes were reported, and the \(^{\cdot} \)OH exclusively abstracted the phenolic hydroxyl \((R_{\text{abs}}OH) \) H atom, to form \(^{\cdot} \)TCS\(-\)H. The kinetics results showed that the \(R_{\text{add}}B_1 \) and \(R_{\text{abs}}OH \) routes would occur preferentially in aquatic environments, and the half-life depended on the \(^{\cdot} \)OH concentration \(([^{\cdot} \)OH] \). At low \([^{\cdot} \)OH], the main intermediates, \(^{\cdot} \)TCS\(-\)OH\(_B_1 \) and \(^{\cdot} \)TCS\(-\)H, can be converted into 2,4-dichlorophenol and polychlorinated dibenzo-p-dioxins, respectively. However, when enough \(^{\cdot} \)OH is present, such as in advanced oxidation process (AOP) systems, they would be fully decomposed. The acute and chronic toxicities of TCS and its products were assessed at three trophic levels using the “ecological structure–activity relationships” program. The toxicity of the products decreased through the \(R_{\text{add}}B_1 \) route, while the toxicity of the products first increased and then decreased through the other degradation routes. These results should help reveal the mechanism of TCS transformation as well as risk assessment in aquatic environments, and will help design further experimental studies and industrial application of AOPs.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Triclosan (TCS), a member of the class of compounds called pharmaceutical and personal care products, is extensively used in household cleaners, skin care creams, soaps, and toothpastes as a broad-spectrum antimicrobial and preservative agent. It is also frequently used in plastic products, toys, and underwear because of its capacity to inhibit microbial growth. Approximately 1500 t of TCS is produced annually worldwide (Chen et al., 2012), and up to 96% of TCS can be washed down the drain and into the sewerage system during normal use, eventually entering the aquatic environment. Thus, TCS has been classed as an emerging contaminant (EC) (Anger et al., 2013). Although wastewater treatment plants can
remove more than 90% of TCS through sorption to the solid phase or biodegradation, the residual TCS is unavoidably discharged into the aquatic environment (Heidler and Halden, 2007), and TCS has been detected in wastewater treatment plant effluents (Singer et al., 2002), natural waters (Fair et al., 2009; Kolpin et al., 2002), and various organisms (Allmýr et al., 2006; Calafat et al., 2008; Geens et al., 2012; Liang et al., 2013; Valters et al., 2005; Wilson et al., 2003), including algae, fish, and humans. Furthermore, TCS and its transformation products have been found to be associated with adverse effects on aquatic organisms and to have endocrine-disrupting effects on the mammals (Ishibashi et al., 2004; Raut and Angus, 2010), including causing human breast cancer (See et al., 2008). The fate of TCS and its transformation products in the aquatic environment has become of great concern.

Generally, ECs in natural surface waters can be transformed through biodegradation, hydrolysis, and photolysis. However, biodegradation and hydrolysis have been reported to be ineffective for TCS (Singer et al., 2002), and photolysis has been found to be an important TCS transformation process in surface waters (Anger et al., 2013; Kliegman et al., 2013). Therefore, the most important factor controlling the fate of TCS in aquatic environments is likely to be its photolysis (Boreen et al., 2003). However, as well as direct photolysis (Anger et al., 2013; Latch et al., 2003; Wong-Wah-Chung et al., 2007), the phototransformation of TCS includes photosensitized transformation (Wong-Wah-Chung et al., 2007), and reaction with reactive species (RSs). Research in this area has mainly been focused on identifying and quantifying the polychlorinated dibenzo-p-dioxin (called “dioxin” in the rest of this paper) photoproducts that can be formed and the transformation pathways in the direct photolysis and photosensitized transformation of TCS (Anger et al., 2013; Kliegman et al., 2013; Latch et al., 2003, 2005; Mezcua et al., 2004; Wong-Wah-Chung et al., 2007). Studies of TCS intermediates or phototransformation mechanisms involving RSs in water, and the natures of the reactions involved, have not yet been published.

A number of RSs, such as *OH, H2O2, O2*, and CO2*, are formed and are constantly present at low concentrations in natural waters (Dong and Rosario-Ortiz, 2012; Vione et al., 2006). Of these, OH is a well-known highly reactive oxidant that plays an important role in the transformation of a wide spectrum of ECs in natural waters (Dong and Rosario-Ortiz, 2012; Wenk et al., 2011) because of the high absolute bimolecular rate constants with ECs (An et al., 2010a, 2010b; Buxton et al., 1988; Fang et al., 2013; Yang et al., 2010). High OH concentrations can be produced easily under certain extreme conditions, for example in advanced oxidation process (AOP) systems (An et al., 2010a, 2010b; Bokare and Choi, 2011; Fang et al., 2013; Shu et al., 2013; Yang et al., 2010). OH-initiated reactions with ECs are, therefore, likely to occur in aquatic environments (either natural waters or AOP systems), regardless of the aquatic conditions. However, all published studies on TCS transformation mechanisms and kinetics up to now have been conducted using photocatalytic experimental systems (Rafqah et al., 2006; Son et al., 2009; Yu et al., 2006), and there are no published studies using a theoretical approach. Furthermore, the potential risks posed by most (~99%) of the transformation products have not been fully considered because the products have not been identified experimentally (Aranami and Readman, 2007), although dioxin-type intermediates have been identified during the phototransformation of TCS.

In this work, to better understand the fate of, and to fully assess the potential risks posed by, TCS in the aquatic environment, the mechanisms and kinetics for OH-initiated transformation of TCS were systematically investigated using the quantum chemical approach. The TCS transformation mechanisms and the causes of different intermediates being produced were elucidated using theoretical calculations, and the possibility of dioxins being formed was assessed under different OH-initiated reaction conditions. The potential risks posed by TCS and its transformation products were also evaluated theoretically using a high-throughput computational tool, the “ecological structure–activity relationships” (ECOSAR) program. The theoretical data obtained can complement experimental results and allow researchers to properly estimate the potential risks posed by TCS and its transformation products in the aquatic environment.

2. Computational methods

2.1. Electronic structure calculations

All quantum chemical calculations were performed using the Gaussian 03 program (Frisch et al., 2003). The geometries of all stationary points were optimized using the hybrid density functional B3LYP method with the 6-31+G(d,p) basis set, B3LYP/6-31+G(d,p). Harmonic vibrational frequencies were calculated at the same level to identify all stationary points as either minima (zero imaginary frequency) or transition states (TSs; only one imaginary frequency), and to provide the thermodynamic contributions to the free energy. Intrinsic reaction coordinate calculations were conducted to confirm that each TS really connected the corresponding reactants with the products. Single point energies, including the solvent effect, were calculated using the B3LYP/6-311++G(3df,2p), based on the optimized structures described above, and the conductive polarizable continuum model (Barone and Cossi, 1998) was used to assess the solvent effect.

In solution, the mechanisms involving single-electron transfer can be possible and calculated using Macus theory (Marcus, 1964, 1993, 1997). The activation barrier (ΔG0_tras) is defined in terms of the free energy of reaction (ΔG0_tras) and the nuclear reorganization energy (λ):

$$\Delta G_{\text{tr}} = \frac{1}{2} \left(1 + \frac{\Delta G_{\text{tr}}}{\lambda} \right)^2$$ \hspace{1cm} (1)

Reorganization energy (λ) has been calculated as

$$\lambda = \Delta E_{\text{tr}} - \Delta G_{\text{tr}}$$ \hspace{1cm} (2)

where ΔE_tr has been calculated as the nonadiabatic energy difference between reactants and vertical products. This approach is similar to the one previously used by Nelsen and co-workers for a large set of single-electron transfer reactions (Nelsen et al., 1987, 2006).
2.2. Reaction kinetics calculations

Using the above potential energy surface information, the reaction kinetics were calculated using conventional transition state theory (TST) as follows (Galano and Alvarez-Idaboy, 2009; Eyring, 1935; Evans and Polanyi, 1935):

\[
k = \frac{k_B T}{h} \exp \left(-\frac{\Delta G^*}{RT} \right)
\]

In the Eq. (3), \(k_B\) and \(h\) are the Boltzmann and Planck constants respectively; \(\Delta G^*\) is the free energy barrier including the thermodynamic contribution corrections; \(o\) represents the reaction path degeneracy, accounting for the number of equivalent reaction paths.

In addition, to simulate realistic conditions in the solution, the solvent cage effect is considered according to the correction proposed by Okuno (1997) and took into account the free volume theory. The expression used to correct Gibbs free energy as follows:

\[
\Delta G^{\text{cage}} = \Delta G^* - RT \ln \left(\frac{\pi D}{h} \right)
\]

where \(n\) is the molecule number of the reaction. According to Eq. (4), the contribution of cage effects was considered and the Gibbs free energy data decreased by 2.54 kcal/mol for bimolecular reactions at 298.15 K.

Some of the calculated rate constant (\(k\)) values are found to be close to the diffusion-limit. Thus, in the present work, the Collins-Kimball theory as shown in Eq. (5) was employed to consider the effect of diffusion-limit based on TST calculations (Collins and Kimball, 1949):

\[
k_{\text{app}} = k \frac{k_D}{k + k_D}
\]

where \(k\) is the thermal rate constant, obtained from TST calculations from Eq. (3), and \(k_D\) is the steady-state rate constant for an irreversible bimolecular diffusion-controlled reaction. And \(k_D\) can be calculated according to Eq. (6):

\[
k_D = 4\pi R D_{\text{AB}} N_A
\]

where \(R\) denotes the reaction distance, \(N_A\) is the Avogadro number, and \(D_{\text{AB}}\) is the mutual diffusion coefficient of the reactants A (OH) and B (TCS). \(D_{\text{AB}}\) has been calculated ÅÅÅÅfrom \(D_A\) and \(D_B\) according to the reference (Truhlar, 1985), and \(D_A\) and \(D_B\) have been estimated from the Stokes–Einstein approach listed in Eq. (7) (Einstein, 1905):

\[
D = \frac{k_B T}{6\pi \eta a}
\]

where \(k_B\) is the Boltzmann constant, \(T\) is the temperature, \(\eta\) denotes the viscosity of the solvent (water in our case, \(\eta = 8.9 \times 10^{-3}\) Pa s), and \(a\) is the radius of the solute.

The half-life (\(t_{1/2}\)) of the OH-initiated TCS reaction was calculated using the formula \(t_{1/2} = \ln 2 / (k_{\text{total}} \times [\text{OH}])\), where [OH] is the *OH concentration.

2.3. Risk assessment calculations

The risk assessment of TCS and its transformation products was carried out using the ECOSAR program (ECOSAR, 2013), to estimate the acute and chronic toxicities of the chemicals to three trophic levels of aquatic organisms (green algae, daphnia, and fish). The most conservative effect concentrations are presented here. The acute toxicity is expressed as EC10 value (i.e., the concentration at which 50% of green algae are adversely impaired after a 96-h exposure) for the algae and LC50 values (i.e., the concentration at which 50% of fish and daphnia die after a 96- and 48-h exposure, respectively) for the fish and daphnia.

3. Results and discussion

3.1. Reactant properties and structures

The optimized structures of both reactants (TCS and OH) and the TCS carbon atom numbers are shown in Fig. 1. It can be seen that TCS is a chlorinated phenoxyphenol, containing a benzene ring (B), a phenolic ring (P), and three chlorine substituents. TCS has a twisted conformation, with a dihedral angle of 62.18° between the benzene and phenolic rings, caused by the steric effect between the chlorine and hydroxyl ortho-substituents. Therefore, it is impossible for TCS to

Please cite this article in press as: Gao, Y., et al., Mechanism, kinetics and toxicity assessment of OH-initiated transformation of triclosan in aquatic environments, Water Research (2013), http://dx.doi.org/10.1016/j.watres.2013.10.027
present a coplanar conformation, and thus may affect its interactions with target cells to finally lead to the potential toxicity (Song et al., 2011). Although TCS has some different configurations in solid state as reported by Latosiński/C19nska et al. (2008), the most stable configuration of TCS which is agreement with the detailed study by Özisik et al. (2010) was selected as a model of this compound to consider its fate and transformation mechanism in aquatic environments. Furthermore, it can be seen from Fig. 1, the calculated structural parameters of reactants were reasonably consistent with the available experimental data (given in parentheses) (Latosińska et al., 2012; NIST, 2013). As a result, it can be concluded that the calculated structural parameters for all of the stationary points were reliable at the B3LYP/6-31+G(d,p) level, despite the lack of structural information for some intermediates, transition states, and products.

3.2. Initial reaction mechanisms and kinetics of TCS with ·OH

3.2.1. Mechanisms
Twenty possible TCS reaction routes initiated by ·OH were considered and modeled, summarized in Scheme S1a–c, due to its asymmetric TCS structure. For convenience, a nomenclature was established for each route: (i) OH-addition (Scheme S1a) onto C atom of either the benzene ring (RaddB1–6) or the phenol ring (RaddP1–6); (ii) H-abstraction (Scheme S1b) from the phenolic hydroxyl group (RabsOH) or an H atom of either the benzene ring (RabsB3,5,6) or the phenol ring (RabsP3,5,6); and (iii) single electron-transfer (Scheme S1c), meaning an electron transfer from TCS by ·OH (Rtrans). The geometries of all of the stationary points such as TSs and products involved in these routes are shown in Figs. S1 and S2. The potential energy surface for each route is shown in Fig. 2. There was not much variation in the free energy barriers (∆Gs) for the OH-addition routes, except for the lowest and highest ∆Gses, which were 5.46 kcal mol⁻¹ for the RaddB1 route and 15.73 kcal mol⁻¹ for the RaddP3 route, respectively. For example, the ∆Gses were 9.23 kcal mol⁻¹ for RaddB3, 8.98 kcal mol⁻¹ for RaddB5, 10.84 kcal mol⁻¹ for RaddP4, and 10.52 kcal mol⁻¹ for RaddP6. This indicates that the RaddB1 route was the most favorable addition route and the RaddP3 route could be ignored. The contributions from the 10 other routes (RaddB2,6 and RaddP1,2,4–6) could not be ascertained easily and needed to be calculated from the kinetic viewpoint. The lowest ∆G* for the H-abstraction routes was found to be the RabsOH route (∆G*= 6.35 kcal mol⁻¹), and it was at least nearly 7 kcal mol⁻¹ lower than the ∆G* for the other routes (RabsB3,5,6 and RabsP3,5,6). This implies that H abstraction from the phenolic hydroxyl group by ·OH (RabsOH) was the almost entirely dominant pathway, leading to the dehydrogenated radical “TCS(−H). The lowest ∆G* (3.72 kcal mol⁻¹) of all of the

Fig. 2 – Schematic free energy diagram for the reaction between triclosan and ·OH at the B3LYP/6-311 + + G(3df,2p)//B3LYP/6-31+G(d,p) level (kcal mol⁻¹).

Please cite this article in press as: Gao, Y., et al., Mechanism, kinetics and toxicity assessment of OH-initiated transformation of triclosan in aquatic environments, Water Research (2013), http://dx.doi.org/10.1016/j.watres.2013.10.027
OH-initiated TCS reaction routes was found for the electron-transfer route (R_{tran}), but this was the only obtained endergonic route with the reaction energy of 3.37 kcal mol\(^{-1}\). Thus the R_{tran} route was, therefore, less spontaneous than the other routes and could be ruled out from a thermodynamic perspective. The following discussion, about kinetics and toxicity assessments, will, therefore, be focused on the OH-addition and H-abstraction routes.

3.2.2. Kinetics

Reaction kinetics studies were carried out, using a temperature range of 273–313 K (Swancutt et al., 2010), to quantitatively evaluate OH-addition and H-abstraction route contributions and to better understand the TCS transformation products in aquatic environments. The rate constants calculated for all of the routes and the overall rate constants (k\text{total}; the sum of the rate constants for all of the routes) are given in Table S1. The k\text{total} values were 1.08 × 10\(^{10}\), 1.81 × 10\(^{10}\), and 2.37 × 10\(^{10}\) (mol L\(^{-1}\) s\(^{-1}\)) at 273, 298, and 313 K, respectively. The data suggested that the OH-initiated TCS reaction was strictly diffusion controlled over the whole temperature range investigated according to the reference (Cramer and Truhlar, 1999). The rate constants for all of the routes and the k\text{total} increased with increasing temperature. For example, the rate constants for the R_{addB1} route increased from 3.58 × 10\(^{9}\) to 4.12 × 10\(^{9}\) (mol L\(^{-1}\) s\(^{-1}\)) as the temperature increased from 273 to 313 K. Thus, it can be concluded that increasing the temperature promotes the OH-initiated transformation of TCS. However, this slight increase in the rate constant with temperature implies that the reaction was really dependent on diffusion-controlled processes and independent of chemical-reaction-controlled processes.

To estimate the reaction kinetics depended on the temperatures without experimental data, Arrhenius formulae were established for all of the routes within a temperature range of 273–313 K (Table S2). The rate constant, preexponential factor, and activation energy for each route could be obtained at a given temperature using these Arrhenius formulae. However, to serve the needs of present work, could be obtained at a given temperature using these Arrhenius formulae. However, to serve the needs of present work, the screening criteria used by the Stockholm Convention (Klasmeier et al., 2005), organic compounds with the t\(_{1/2}\) more than 60 d in the aquatic environment were grouped as persistent organic pollutants (POPs)-like compounds. The t\(_{1/2}\) for the OH-initiated transformation of TCS in the aquatic environment was above 60 d at OH concentrations of 1.24 × 10\(^{-17}\), 7.39 × 10\(^{-18}\), and 5.64 × 10\(^{-18}\) mol L\(^{-1}\) at 273, 298, and 313 K, respectively. So TCS should be considered as a potential POPs-like compound when the *OH concentration is below any of these values at the relevant conditions in the aquatic environment, and it really requires particular attention.

The branching ratio (Γ) dependence of the temperature was calculated to gain an understanding of the contribution of each route to the whole reaction and to quantitatively predict the intermediates formed. Fig. S4a–b shows the Γ values for all of the OH-addition and H-abstraction routes, between 273 and 313 K. The Γ values for each route, except the R_{abAB1}, and R_{absOH} routes, increased with increasing temperature. However, the Γ values for the R_{addB2,4,6}, R_{addP3,4,6}, R_{absB3,5,6}, and R_{absP3,5,6} routes were below 3.6% within the temperature range investigated. For instance, at 298 K, the Γ values for the R_{addB2,4,6}, R_{addP3,4,6}, R_{absB3,5,6}, and R_{absP3,5,6} routes were below 2.1%. These small Γ values suggested that these twelve routes were contributed very less to the OH-initiated transformation of TCS in aquatic environments. For clarity, the Γ values for the other routes (R_{absP3,5,6} and R_{addOH}) are shown in Fig. 3. The Γ values for the R_{absOH} and R_{addB1} routes at 298 K were 24.8% and 21.7%, respectively, and the other five routes contributed 10.3% (R_{addB3}), 12.5% (R_{addB6}), 4.9% (R_{absP1}), 14.2% (R_{addP2}), and 7.6% (R_{addP3}) to the total rate constant. The R_{absOH} and R_{addB1} routes remained the dominant routes with increasing temperature, although the Γ values decreased to 20.0% and 17.4%, respectively, at 313 K. Therefore, TCS (H) and TCS–OH\(_{2}\) would be formed as the first main intermediates in the temperature range investigated. However, it is worth noting that the contributions from the five other routes increased to 7.1–13.9% at 313 K (Fig. 3), indicating that their intermediates, TCS–OH\(_{2}\), should not be ignored, especially at high temperatures.

3.3. Subsequent reactions of the primary intermediates

Based on the results described above, we concluded that six OH-adducts (TCS–OH\(_{3,5}\) and TCS–OH\(_{1,3,5}\)) and a
dehydrogenated radical (\(\cdot\)TCS(–H)) were the main products of the initial reactions of TCS with \(\cdot\)OH. These adducts and radicals, being highly active radical species, can undergo a series of subsequent transformation reactions to produce more stable products. So it is very important to track the subsequent reactions of these primary intermediates in the aquatic environment.

3.3.1. OH-addition products (\(\cdot\)TCS–OH\(_3\), \(\cdot\)TCS–OH\(_2\), \(\cdot\)TCS–OH\(_1\))

The subsequent degradation routes of \(\cdot\)TCS–OH\(_3\) are shown in Fig. 4. It can be seen that \(\cdot\)TCS–OH\(_3\) can undergo ether bond cleavage, by overcoming a \(\Delta G^\ddagger\) of 4.85 kcal mol\(^{-1}\), and the main transformation products were 2,4-dichlorophenol (2,4-DCP) and 4-chloro-o-semiquinone (\(\cdot\)SQ1) at low \([\cdot\)OH]. However, in the presence of enough \(\cdot\)OH, \(\cdot\)TCS–OH\(_3\) is more likely to be attacked by \(\cdot\)OH, forming three dihydroxy-TCS isomers (OH\(_{31}\)–OH\(_{34,6}\)) but not 2,4-DCP, because these processes are barrier-less, with reaction energies of −48.24, −51.24, and −45.73 kcal mol\(^{-1}\), for OH\(_{31}\)–OH\(_{32}\), OH\(_{32}\)–OH\(_{34,6}\), and OH\(_{34,6}\)–OH\(_{36}\), respectively. Subsequently, the ether bond cleavage of OH\(_{31}\)–OH\(_{34,6}\) and OH\(_{32}\)–OH\(_{34,6}\) preferentially occurs, forming 4-chlorocatechol (4-CC) (\(\Delta G^\ddagger\) = 12.51 and 20.44 kcal mol\(^{-1}\), respectively), while further transformation of OH\(_{31}\)–OH\(_{36}\) is difficult because its \(\Delta G^\ddagger\) is high (53.11 kcal mol\(^{-1}\)). Similar results were found for the subsequent transformation of \(\cdot\)TCS–OH\(_2\) (Fig. S5). That is, 4-CC is also the main transformation product at low \([\cdot\)OH], and three dihydroxylated TCS isomers (OH\(_{21}\)–OH\(_{24,6}\)) can be obtained easily, and then be transformed into final products in the presence of enough \(\cdot\)OH.

The subsequent routes for \(\cdot\)TCS–OH\(_2\) are shown in Fig. S6. It is really difficult routes for example the direct dehydrogenation (R\(_{\text{del}}\)H) and dechlorination (R\(_{\text{del}}\)Cl) in the aquatic environment because of their high \(\Delta G^\ddagger\)s (33.83 and 43.64 kcal mol\(^{-1}\), respectively) at low \([\cdot\)OH]. However, in the presence of enough \(\cdot\)OH, OH-addition to the benzene ring of \(\cdot\)TCS–OH\(_2\) occurs rapidly through three barrier-less processes with high exothermic energies (\(\Delta G = −48.29, −52.57,\) and −48.75 kcal mol\(^{-1}\)), producing three dihydroxyl-TCS isomers (OH\(_{21}\)–OH\(_{23}\), OH\(_{23}\)–OH\(_{24,6}\), and OH\(_{24,6}\)–OH\(_{26}\), respectively). Subsequently, the intermediates, except OH\(_{23}\)–OH\(_{26}\), can easily form the hydroxylated polychlorinated diphenyl ethers (OH-PCDE\(_{1,3}\)) via HCl-elimination from OH\(_{23}\)–OH\(_{26}\). The single electron transfer route of \(\cdot\)TCS–OH\(_2\), mediated by \(\cdot\)OH, is also exothermic, and can lead to the formation of the stable monohydroxy-TCS (TCS–OH\(_3\)), with a \(\Delta G^\ddagger\) of 6.07 kcal mol\(^{-1}\). Similar conclusions can be drawn for the subsequent transformation routes for \(\cdot\)TCS–OH\(_3\), \(\cdot\)TCS–OH\(_4\), and \(\cdot\)TCS–OH\(_5\) (Figs. S7–S9). That is, in the presence of enough \(\cdot\)OH, these intermediates would easily be converted into stable hydroxylated products, such as OH\(_{35}\), OH\(_{36}\), OH\(_{27}\), OH\(_{27}\), and OH\(_{27}\), and then further transformed into monohydroxylated products (TCS–OH\(_3\) and TCS–OH\(_5\)) and hydroxylated polychlorinated diphenyl ethers (OH-PCDE\(_{4,3}\)). All of these results were in well agreement with our previous results that TCS is much more easily degraded at high \([\cdot\)OH].

3.3.2. H-abstraction product \(\cdot\)TCS(–H)

The subsequent transformation routes of \(\cdot\)TCS(–H) are shown in Fig. 5. Two possible \(\cdot\)TCS(–H) cyclization routes, the R\(_{\text{cyC}}\)B\(_2\) and R\(_{\text{cyC}}\)B\(_3\) routes, could occur at low \([\cdot\)OH]. However, because the R\(_{\text{cyC}}\)B\(_2\) route is endergonic (\(\Delta G = 14.27\) kcal mol\(^{-1}\)) and the R\(_{\text{cyC}}\)B\(_3\) route is exothermic (\(\Delta G = −1.67\) kcal mol\(^{-1}\)), the latter route should occur spontaneously. Although the \(\Delta G^\ddagger\) of the R\(_{\text{cyC}}\)B\(_3\) route was up to 29.46 kcal mol\(^{-1}\), it was still lower than the energy (35.61 kcal mol\(^{-1}\)) released from the original reaction to form \(\cdot\)TCS(–H), indicating that the R\(_{\text{cyC}}\)B\(_3\) route should
occur easily, forming dioxins (dichlorodibenzo-p-dioxin; DCDD). It is well known that DCDD is an extremely toxic, carcinogenic environmental contaminant. It can, therefore, be confirmed that DCDD could potentially be formed from the OH-initiated transformation of TCS via the intermolecular cyclization of \(\text{TCS}(-\text{H}) \) in aquatic environments at low \([\text{OH}]\).

However, in the presence of a high \([\text{OH}]\), \(\text{TCS}(-\text{H}) \) is prone to be further attacked by \(\cdot\text{OH} \), to produce three stable OH-adducts \((\text{TCS}(-\text{H})-\text{OH}_{1,2,3})\), because these processes are all barrier-less with \(\Delta G \) values of \(-38.34, -46.01, \) and \(-42.94 \text{ kcal mol}^{-1}\), for \(\text{TCS}(-\text{H})-\text{OH}_{2}, \text{TCS}(-\text{H})-\text{OH}_{3}, \) and \(\text{TCS}(-\text{H})-\text{OH}_{4} \), respectively. Subsequently, because of these high \(\Delta G \) values, \(\text{TCS}(-\text{H})-\text{OH}_{4} \) can easily form the corresponding products, with \(\Delta G^* \)'s of \(9.64 \text{ (TCS}(-\text{H})-\text{OH}_{2}) \), \(40.28 \text{ (TCS}(-\text{H})-\text{OH}_{3}) \), and \(29.10 \text{ (TCS}(-\text{H})-\text{OH}_{4}) \) \text{ kcal mol}^{-1}\), and DCDD will not be observed in aquatic environments at high \([\text{OH}]\). In addition, because \(\text{TCS}(-\text{H})-\text{OH}_{1} \) has the lowest \(\Delta G^* \), its product, 2,4-dichlorinated phenoxide radical \(\cdot\text{DCP}(-\text{H}) \), is the main product, and can be converted into the monochlorinated derivative 4-chloro-1,2-benzoquinone \((\text{Peller and Kamat, 2005})\).

In summary, our findings give an insight into TCS transformation mechanisms and kinetics at different \([\text{OH}]\). Our results showed that the OH-initiated transformation of TCS was a potential source of dioxins in aquatic environments at low \([\text{OH}]\), while the risks from other products produced during the OH-initiated transformation of TCS should not be neglected.

3.4. Toxicity predictions for the intermediates formed during the transformation of TCS

3.4.1. The toxicities of TCS

Experimental risk assessments of ECs are time consuming, costly, and equipment dependent, so a cost-effective and convenient computational approach was developed for quick toxicity screening. The ECOSAR program has often been used because it is a reliable method for theoretically predicting the toxicities of transformation products \((\text{Buth et al., 2007})\). The acute and chronic toxicities of TCS were first calculated using the ECOSAR program, at three trophic levels \((\text{Table S4})\). The acute toxicity of TCS was estimated as \(\text{LC}_{50} \) for fish and daphnia as well as \(\text{EC}_{50} \) for green algae, and these values were 0.48, 0.47, and \(1.67 \text{ mg L}^{-1} \), respectively. According to criteria set by the European Union \((\text{Annex VI of Directive 67/548/EEC})\), TCS was classed as very toxic to fish and daphnia \((\text{LC}_{50} < 1.0 \text{ mg L}^{-1}) \) and toxic to green algae \((1.0 < \text{EC}_{50} < 10.0 \text{ mg L}^{-1}) \). The calculated toxicities well agreed with experimental values \((\text{LC}_{50} \text{s for fish and daphnia and an EC}_{50} \text{ for green algae of} 0.37, 0.39, \) and \(1.5 \text{ mg L}^{-1} \), respectively) \((\text{Boreen et al., 2003}; \text{Raut and Angus, 2010})\), showing that the ECOSAR program is suitable to assess the toxicities of TCS and its transformational products. The chronic toxicity values \((\text{ChVs}) \) for TCS were predicted to be \(0.07 \text{ mg L}^{-1} \) for fish, \(0.09 \text{ mg L}^{-1} \) for daphnia, and \(0.76 \text{ mg L}^{-1} \) for green algae. According to the Chinese hazard evaluation guidelines for new chemical substances \((\text{HJ/T 154–2004})\), TCS was classified as very chronically toxic to fish and daphnia \((\text{ChV} < 0.1 \text{ mg L}^{-1}) \) and chronically toxic to green algae \((0.1 < \text{ChV} < 1.0 \text{ mg L}^{-1}) \). From the point of view of its acute and chronic toxicity, therefore, TCS was found to be a toxic substance that could cause great harm to aquatic organisms at three trophic levels. So the toxicity assessment of TCS transformation products in aquatic environments should be considered seriously.

3.4.2. The toxicities of intermediates in the \(\cdot\text{OH} \)-addition route

A schematic representation of the evolution of the acute and chronic toxicities through the \(\text{R}_{\text{addB}_3} \) route is shown in \(\text{Fig. 6a–f} \), and the corresponding toxic values are given in \(\text{Table S5} \). The \(\text{LC}_{50} \) of all of the intermediates \((\text{OH}_{3,5}-\text{OH}_{8,2,4,6} \) 4-CC, and 2,4-DCP) for fish were higher than \(1.0 \text{ mg L}^{-1} \).
The LC\(50\)s for each of the products except DCDD were around or found to be 0.81, 0.47, 1.82, and 0.11 mg L\(^{-1}\). The evolutions through the R\(\text{add\textsubscript{B1}}\) route relative to TCS. Similar results were obtained for the acute toxicities to daphnia (Fig. 6b). However, the case was somewhat different for the acute toxicities to green algae (Fig. 6c), and the EC\(50\)s for OH\(\text{B1} \rightarrow \text{OH}_{2,4,6}\) were obtained as 0.03–0.08 mg L\(^{-1}\) (Table S5), suggesting that OH\(\text{B1} \rightarrow \text{OH}_{2,4,6}\) were one level more toxic than TCS. Furthermore, the final transformation product of OH\(\text{B2,4,6}\) (EC\(50\) = 3.89 mg L\(^{-1}\)) was less toxic to green algae than TCS (EC\(50\) = 1.67 mg L\(^{-1}\)), although both compounds were at the same toxic level. These results imply that the acute toxicities of the intermediates to green algae initially increased, and then decreased as OH\(\text{B1} \rightarrow \text{OH}_{2,4,6}\) was transformed into 4-CC. Similar results can be seen in Fig. 6d-f for the chronic toxicity evolution through the R\(\text{add\textsubscript{B1}}\) route. That is, the chronic toxicity initially increased slightly and then decreased significantly through the transformation processes. The evolutions of the acute and chronic toxicities through the other OH-addition routes (R\(\text{add\textsubscript{B3,5,P1,2,5}}\)) were the same as the R\(\text{add\textsubscript{B1}}\) route (Figs. S10–S14 and Table S6).

3.4.3. The toxicities of the degradation products through the H-abstraction route

A schematic representation of the evolutions of the acute and chronic toxicities through the R\(\text{add\textsubscript{OH}}\) route is shown in Fig. 6a, and the corresponding toxicities are summarized in Table S7. The LC\(50\)s of the products, TCS(-H)→OH\(\text{B1}\), TCS(-H)→OH\(\text{B3}\), TCS(-H)→OH\(\text{P3}\), and DCDD, for fish were found to be 0.81, 0.47, 1.82, and 0.11 mg L\(^{-1}\), respectively. The LC\(50\)s for each of the products except DCDD were around or smaller than that of TCS (0.48 mg L\(^{-1}\)). From Fig. 5, it can be seen that the acute toxicity to fish would decrease slightly at high [OH], but it would otherwise increase rapidly through the transformation of TCS into DCDD in aquatic environments at low [OH] (Fig. S15a). The acute toxicities varied in similar ways for daphnia (Fig. S15b). However, the EC\(50\)s of the products for green algae, were 0.11 mg L\(^{-1}\) for DCDD, 0.84 mg L\(^{-1}\) for TCS(-H)→OH\(\text{P3}\), 0.05 mg L\(^{-1}\) for TCS(-H)→OH\(\text{P5}\), and 0.07 mg L\(^{-1}\) for TCS(-H)→OH\(\text{P5}\), and these are all lower than that of TCS.

The four H-abstraction route products were more chronically toxic than TCS (Fig. S15d–f). For example, the ChVs of DCDD, TCS(-H)→OH\(\text{P3}\), TCS(-H)→OH\(\text{P5}\), and TCS(-H)→OH\(\text{P5}\) for fish were 0.02, 0.01, 0.01, and 0.02 mg L\(^{-1}\), respectively (Table S7), and these are slightly lower than that of TCS (0.07 mg L\(^{-1}\)). So we can conclude that the chronic toxicity of the produced products were more toxic than TCS. However, these more toxic intermediates could be further degraded at high [OH], so the chronic toxicity could be, finally, decreased. Similar toxicity evolutions through the transformation process have been found for other ECs (Fang et al., 2013).

In summary, our results show that TCS is potentially persistent in aquatic environments at low [OH], so the toxicities of its transformation products need to be assessed, particularly for chronic effects on different aquatic organisms. The accumulation of hazardous products of the OH-initiated transformation of TCS may affect the aquatic environment more seriously than TCS itself, so the OH-initiated transformation of TCS needs to be studied in more depth.

3.5. TCS fate predictions in AOP systems

The frequently use and broad application of TCS and its inadequate removal in current wastewater treatment methods mean that high TCS concentrations have been found in wastewater treatment plant effluents. Conventional wastewater treatment approaches do not easily lead to the degradation of TCS by microorganisms, and it may be persistent in aquatic environments, although it could be depleted by OH-initiated reactions, for example in the photochemical transformation. Therefore, AOPs (in which •OH is continuously generated, and the [•OH] can be up to...
The major findings were:

1) The computational approach is a cost-effective way of revealing the mechanisms and kinetics, and assessing the risks associated with, the transformation of TCS in the aquatic environment;

2) OH-initiated reactions, as a part of the phototransformation process, play an important role in the transformation of TCS in the natural aquatic environment. The TCS $t_{1/2}$ ranged from 10.64 h to 443 d at 298 K, and, at [OH] below 7.39×10^{-18} mol L$^{-1}$, TCS should be considered a potential POP-like compound, requiring particular attention;

3) The [OH] in the aquatic environment can influence the transformation intermediates. For example, dioxin could be formed through the intermolecular cyclization of the H-abstraction product at low [OH]. This suggests that the OH-initiated transformation of TCS could be a source of dioxins in natural waters;

4) The acute and chronic toxicities of TCS as well as its transformation products were evaluated at three trophic levels. As TCS was degraded, intermediates that are more toxic than TCS can be produced, so the risk assessment of TCS transformation products in aquatic environments cannot be ignored, particularly relating to chronic effects on different aquatic organisms. The accumulation of hazardous products from the OH-initiated transformation of TCS may have more serious effects on aquatic environments than TCS itself;

5) AOPs are very effective and promising technologies to eliminate TCS from drinking water and wastewater, and dioxins are unlikely to be formed if enough *OH can be continuously generated for example in an AOP system.

Acknowledgments

This is contribution No. 1744 from GIGCAS. The authors gratefully acknowledge the financial support from Knowledge Innovation Program of Chinese Academy of Sciences (No. KZCX2-YW-QN103), National Nature Science Foundation of China (No. 40973068), Science and Technology R&D Fund of Shenzhen City (JC201005250054A) and of Guangdong Province (2012A032300010), and the Earmarked Fund of the State Key Laboratory of Organic Geochemistry (SKLOG2012A01 and SKLOG2009A02).

References

Allmyr, M., McLachlan, M.S., Sandborgh-Englund, G., Adolfsson-Erici, M., 2006. Determination of triclosan as its pentafluorobenzoyl ester in human plasma and milk using...
electron capture negative ionization mass spectrometry. Anal. Chem. 78 (18), 6542–6546.

